Nutrition Support Calculations
 NDFS 356

1. Determine the following for Ensure at $68 \mathrm{ml} /$ hour (Note: when working with volumes of formula for enteral formula, it is expressed in total volume/ml not as cans or ounces. For example: 1200 ml 's, not 5 cans).
a. Total volume: $68 \mathrm{ml} / \mathrm{hr} \times 24 \mathrm{hr}=1632 \mathrm{ml}$
b. Total calories: $0.93 \mathrm{kcal} / \mathrm{ml} \times 1632 \mathrm{ml}=1518 \mathrm{kcal}$
c. Protein (grams): $1632 \mathrm{ml} \mathrm{x} 9 \mathrm{~g} / 237 \mathrm{ml}=62 \mathrm{~g}$
2. Determine the following for Jevity 1.2 at $120 \mathrm{ml} /$ hour:
a. Total volume $(\mathrm{mL}): 120 \mathrm{ml} / \mathrm{hr} \times 24 \mathrm{hr}=2880 \mathrm{~mL}$
b. Total calories: $2880 \mathrm{ml} \mathrm{x} 1.2 \mathrm{kcal} / \mathrm{ml}=3456 \mathrm{kcal}$
c. Total protein (g): $2880 \mathrm{ml} \mathrm{x} 13.2 \mathrm{~g} / 237 \mathrm{ml}=160.4 \mathrm{~g}$
d. Free water (ml): $807 \mathrm{ml} \mathrm{H} 20 / 1 \mathrm{~L} \times 2.88 \mathrm{~L}=2324 \mathrm{ml}$ Free Water
e. Fiber (g): $2880 \mathrm{ml} \mathrm{x} 4.3 \mathrm{~g} / 237 \mathrm{ml}=52 \mathrm{~g}$
3. How much Perative would need to be delivered to provide about 2,500 calories and about 130 protein?
a. Total volume in ml's: Perative $=1.3 \mathrm{Cal} / \mathrm{ml}$ Protein $=66.7 \mathrm{~g} / \mathrm{L}$

$$
\begin{aligned}
& 2500 \mathrm{kcal} \times 1 \mathrm{ml} / 1.3 \mathrm{kcal}=1923 \mathrm{ml} \\
& 130 \mathrm{~g} \mathrm{x} 237 \mathrm{ml} / 15.8 \mathrm{~g}=1950
\end{aligned}
$$

4. Calculate the following for Procalamine at $100 \mathrm{ml} \times 24$ hours.
a. Protein (grams):
$100 \mathrm{ml} \times 24 \mathrm{hr}=2400 \mathrm{ml} /$ day
$2400 \mathrm{ml} \times 29 \mathrm{~g} / 1000 \mathrm{ml}=69.6 \mathrm{~g}$
b. Total calories:
$2400 \mathrm{ml} \times 130 \mathrm{kcal} / 1000 \mathrm{ml}=590 \mathrm{kcal}$
c. Total non-protein calories (NPC):
$590 \mathrm{kcal}-(69.6 \mathrm{~g} \mathrm{x} 4 \mathrm{kcal} / \mathrm{g})=312 \mathrm{NPC}$
5. Calculate how much Impact is necessary to provide 80 grams of protein. What is the total volume, calories and free fluid that it would provide?
Protein $=56 \mathrm{~g} / \mathrm{L} \mathrm{kcal}=1 / \mathrm{ml}$ free fluid $=853 \mathrm{ml} / 1 \mathrm{~L}$
a. Total volume (ml):
$80 \mathrm{~g} \times 1 \mathrm{~L} / 56 \mathrm{~g}=1.429 \mathrm{~L}$
b. Total calories:
$1429 \mathrm{ml} \mathrm{x} 1 \mathrm{kcal} / \mathrm{ml}=1429 \mathrm{kcal}$
c. Free fluid (water) (ml):
1.429 L x 853 ml water $/ 1 \mathrm{~L}=1219 \mathrm{ml}$
6. How many cans of Nutren 2.0 are necessary to provide 1250 calories? How much protein does it provide? How much free fluid? (when supplements are consumed PO, they are usually expressed in cans/day)
1 can $=250 \mathrm{ml}$
a. \# of cans:
$1250 \mathrm{kcal} \times 1 \mathrm{ml} / 2 \mathrm{kcal} \times 1 \mathrm{can} / 250 \mathrm{ml}=2.5 \mathrm{cans}$
b. Protein (g):
2.5 cans x $20 \mathrm{~g} / 1$ can $=50 \mathrm{~g}$
c. Free Fluid:
$2.5 \mathrm{can} \times 175 \mathrm{ml} / 1 \mathrm{can}=437.5 \mathrm{ml}$
7. Determine the following for someone who consumed 3 and one-half cans of Boost.
a. Calories:
3.5 cans x $237 \mathrm{ml} / 1 \mathrm{can} \times 1 \mathrm{kcal} / \mathrm{ml}=829.5 \mathrm{kcal}$
b. Protein (g):
3.5 cans $\mathrm{x} 10 \mathrm{~g} / 1 \mathrm{can}=35 \mathrm{~g}$
8. How much of the following nutrients would be provided in 2 Glucerna meals bars?
a. Kcals:

2 bars x $220 \mathrm{kcal} / 1 \mathrm{bar}=440 \mathrm{kcal}$
b. Protein:

2 bars x $10 \mathrm{~g} / \mathrm{bar}=20 \mathrm{~g}$ protein
c. Overall \% of DV:
$35 \% \times 2=70 \%$
9. For the following Standard TPN solution, calculate the requested information: 2800 ml of $50 \% \mathrm{CHO}$ and 8.5% AA.
a. Protein (grams):
$1400 \mathrm{ml} \mathrm{x} 8.5 \mathrm{~g} / 100 \mathrm{ml}=119 \mathrm{~g}$
b. Total NPC:
$1400 \mathrm{ml} \mathrm{x} 50 \mathrm{~g} / 100 \mathrm{ml}=700 \mathrm{~g}$ $700 \mathrm{~g} \times 3.4 \mathrm{kcal} / \mathrm{g}=2380 \mathrm{kcal} \mathrm{NPC}$
c. Total calories:
$(119 \mathrm{~g} \mathrm{x} 4 \mathrm{kcal} / \mathrm{g})+2380 \mathrm{kcal} \mathrm{NPC}=2856 \mathrm{kcal}$
10. Calculate the nutritional provisions in a standard solution of 2,450 ml $50 \% \mathrm{CHO}, 10 \%$ protein, and 10% lipids (500 ml 's) QOD
a. Protein (grams):
$1225 \mathrm{ml} \mathrm{x} 10 \mathrm{~g} / 100 \mathrm{ml}=122.5 \mathrm{~g}$ Protein
b. Total NPC:

CHO: $1225 \mathrm{ml} \times 50 \mathrm{~g} / 100 \mathrm{ml}=612.5 \mathrm{~g}$
$612.5 \mathrm{~g} \mathrm{x} \mathrm{3.4/g} \mathrm{kcal=2082.5kcal}$,
Fat: $500 \mathrm{ml} \times 10 \mathrm{~g} / 100 \mathrm{ml}=50 \mathrm{~g}$
$50 \mathrm{~g} \mathrm{x} 11 \mathrm{kcal} / \mathrm{g}=550 \mathrm{kcal}$
$550 \mathrm{kcal} \times 3.5 / \mathrm{week}=1925 \mathrm{kcal} /$ week
$1925 \mathrm{kcal} /$ week x 1 week/ 7 days $=275 \mathrm{kcal} /$ day
$\mathrm{CHO}+$ Fat $=2082.5 \mathrm{kcal}+275 \mathrm{kcal}=2357.5 \mathrm{kcal}$
c. Total calories:
$\mathrm{NPC}+$ Protein $=2357.5 \mathrm{kcal}+(122.5 \mathrm{~g} \mathrm{x} 4 \mathrm{kcal} / \mathrm{g})=2847.5 \mathrm{kcal}$
11. Calculate the following: $1,200 \mathrm{ml}$ of $70 \% \mathrm{CHO} ; 1,000 \mathrm{ml}$ of 8.5% protein; and 20% lipids (in 500 ml bag) given QOD to a 74 kg person.
a. Protein (grams):
$1000 \mathrm{ml} \mathrm{x} 8.5 \mathrm{~g} / 100 \mathrm{ml}=85 \mathrm{~g}$
b. Total NPC (average/day):

CHO: $1200 \mathrm{ml} \mathrm{x} 70 \mathrm{~g} / 100 \mathrm{ml}=840 \mathrm{~g}$
$840 \mathrm{~g} \mathrm{x} 3.4 \mathrm{kcal} / \mathrm{g}=2856 \mathrm{kcal}$
Fat: $500 \mathrm{ml} \times 20 \mathrm{~g} / 100 \mathrm{ml}=100 \mathrm{~g}$
$100 \mathrm{~g} \mathrm{x} 10 \mathrm{kcal} / \mathrm{g}=1000 \mathrm{kcal}$
$1000 \mathrm{kcal} \times 3.5 / \mathrm{week} \times 1 \mathrm{wk} / 7$ days $=500 \mathrm{kcal} /$ day
$\mathrm{CHO}+$ Fat $=2856 \mathrm{kcal}+500 \mathrm{kcal}=3356 \mathrm{kcal}$
c. Total calories:

Protein + NPC $=(85 \mathrm{~g} \mathrm{x} 4 \mathrm{kcal} / \mathrm{g})+3356 \mathrm{kcal}=3696 \mathrm{kcal}$
d. Fat load:
$50 \mathrm{~g} / 74 \mathrm{~kg}=0.68$ Fat Load
e. CHO load:
$840,000 \mathrm{mg} / 74 \mathrm{~kg} / 1440 \mathrm{~min}=7.88 \mathrm{CHO}$ Load
f. What is the max amount of CHO for this person:
$\mathrm{n} / 74 / 1440=6$
$\mathrm{N}=639,369 \mathrm{mg}=639 \mathrm{~g} \mathrm{CHO}$
12. MC is starting on TPN (wt. 61 kg). You determined his needs to be $2,650 \mathrm{kcals} /$ day and protein needs at 91 grams. He will get 10% lipids 3 times/week. Write a TPN order using 60% dextrose and 8.5% AA (include protein calories) to meet his needs:
a. Volume CHO (60\%):
$60 \mathrm{~g} / 100 \mathrm{ml} \times 3.4 \mathrm{kcal} / \mathrm{g}=2.0 \mathrm{kcal} / \mathrm{ml}$
$2050 \mathrm{kcal} \times 1 \mathrm{ml} / 2.0 \mathrm{kcal}=1025 \mathrm{ml}$
b. Volume Pro (8.5\%):
$8.5 \mathrm{~g} / 100 \mathrm{ml} \times 4 \mathrm{kcal} / 1 \mathrm{~g}=0.34 \mathrm{kcal} / 1 \mathrm{ml}$
$91 \mathrm{~g} \mathrm{x} 1 \mathrm{ml} / 0.085 \mathrm{~g}=1071 \mathrm{ml}$
$1071 \mathrm{ml} \times 0.34 \mathrm{kcal} / \mathrm{ml}=364 \mathrm{kcal}$
c. Average daily lipid calories:
$50 \mathrm{~g} \mathrm{x} 3=150 \mathrm{~g}$
$150 \mathrm{~g} / 7$ days $=21.4 \mathrm{~g} /$ day
$21.4 \mathrm{~g} /$ day x $11 \mathrm{kcal} / \mathrm{g}=235.4 \mathrm{kcal} / \mathrm{day}$
d. Fat load:
$21.4 \mathrm{~g} / 61 \mathrm{~kg}=0.35$ fat load
e. CHO load:
$1025 \mathrm{ml} \mathrm{x} 0.6 \mathrm{~g} / \mathrm{ml}=615 \mathrm{~g}$
$615,000 \mathrm{mg} / 61 \mathrm{~kg} / 1440 \mathrm{~min}=7.0 \mathrm{CHO}$ load
13. Design a TPN formula to provide 1840 calories and 65 grams of protein for a 59 kg person. Remember the minimum lipid requirements. Make sure the person receives adequate fluid.

Protein: $65 \mathrm{~g} \mathrm{x} 1 \mathrm{ml} / 0.085 \mathrm{~g}=765 \mathrm{ml}$
$765 \mathrm{mlx} 0.085 \mathrm{~g} / 1 \mathrm{ml}$ x $4 \mathrm{kcal} / 1 \mathrm{~g}=260 \mathrm{kcal}$
Fat: $500 \mathrm{ml} \times 3.5 / \mathrm{wk} \times 1 \mathrm{wk} / 7$ day x $0.2 \mathrm{~g} / 1 \mathrm{ml}=50 \mathrm{~g} /$ day
$50 \mathrm{~g} /$ day $\times 10 \mathrm{kcal} / \mathrm{g}=500 \mathrm{kcal} /$ day
Calories: $1840 \mathrm{kcal}-(260 \mathrm{kcal}$ Protein +500 kcal Fat $)=1080 \mathrm{kcal} \mathrm{CHO}$
CHO: $1080 \mathrm{kcal} \times 1 \mathrm{~g} / 3.4 \mathrm{kcal} \times 100 \mathrm{ml} / 20 \mathrm{~g}=1588 \mathrm{ml}$
CHO load: $1588 \mathrm{ml} \times 20 \mathrm{~g} / 100 \mathrm{ml}=317 \mathrm{~g}$
$317000 \mathrm{mg} / 59 \mathrm{~kg} / 1440 \mathrm{~min}=3.7 \mathrm{load}$
Fat Load: $50 \mathrm{~g} / 59 \mathrm{~kg}=0.85$ load

	$\%$	Volume (ml)	
CHO	20%	1588	
Protein	8.5%	765	
Fat	20%	Volume: 500	Frequency: QOD
Fat load	0.85		
CHO load	3.7		

14. JT is receiving both Procalamine and Jevity 1.0 . He is tolerating Jevity at only $40 \mathrm{ml} /$ hour which doesn't meet his protein needs of 90 grams. How much Procalamine does he need and at what rate over 24 hours to meet his total protein needs?
a. Procalamine (grams protein):

Jevity $=40 \mathrm{ml} / \mathrm{hr} \times 24 \mathrm{hr} /$ day x 44.3 g protein $/ 1000 \mathrm{ml}=42.5 \mathrm{~g}$ pro $/$ day
Needs $=90 \mathrm{~g}-42.5 \mathrm{~g}=47.5 \mathrm{~g}$ protein
b. Procalamine (volume):
$47.5 \mathrm{~g} \mathrm{x} 1000 \mathrm{ml} / 29 \mathrm{~g}=1638 \mathrm{ml}$
c. Rate of Procalamine:
$1638 \mathrm{ml} / 24 \mathrm{hr}=68 \mathrm{ml} / \mathrm{hr}$
d. Kcals provided by Jevity:

960 ml Jevity x $1.06 \mathrm{kcal} / 1 \mathrm{ml}=1018 \mathrm{kcal}$
15. Find a product that will provide 1,200 calories and >60 grams pro in less than $1,000 \mathrm{ml}$ and osmolality less than 600 mOsm . How much must be delivered?

Jevity $1.5,956 \mathrm{ml}=1434 \mathrm{kcal}$ and 61 g protein
Osmolality $=525 \mathrm{mOsm}$

61 g pro $\times 1000 \mathrm{ml} / 63.8 \mathrm{~g}=956 \mathrm{ml}$ $956 \mathrm{ml} \times 1.5 \mathrm{kcal} / \mathrm{ml}=1434 \mathrm{kcal}$
16. Calculate the following for Jevity 1.5 half strength (diluted in equal water-i.e. $1 / 2$ of the total volume is added water) at $83 \mathrm{ml} /$ hour over 22 hours.
$83 \mathrm{ml} / \mathrm{hr} \times 22 \mathrm{hr} /$ day x $1 / 2=913 \mathrm{ml}$ Jevity $/$ day
a. Calories:
$913 \mathrm{ml} \times 1.5 \mathrm{kcal} / \mathrm{ml}=1379 \mathrm{kcal}$
b. Protein:
$913 \mathrm{ml} \times 63.8 \mathrm{~g} / 1000 \mathrm{ml}=58.2 \mathrm{~g}$
c. Total volume:
$83 \mathrm{ml} / \mathrm{hr} \times 22 \mathrm{hr} /$ day $=1826 \mathrm{ml}$
d. Free fluid from Jevity 1.5:
$913 \mathrm{ml} \times 760 \mathrm{~g} / 1000 \mathrm{ml}=694 \mathrm{ml}$
e. Total free fluid provided (added water plus Jevity free fluid):
$694 \mathrm{ml}+913 \mathrm{ml}=1607 \mathrm{ml}$
17. Design a tailor-made formula providing 112 grams protein, 2,875 total calories, and $3,100 \mathrm{ml}$'s total fluid ($\pm 100 \mathrm{ml}$'s) for an 89 kg person. Complete the table below.

Protein: $112 \mathrm{~g} \mathrm{x} 100 \mathrm{ml} / 8.5 \mathrm{~g}=1318 \mathrm{ml}$
$112 \mathrm{~g} \mathrm{x} 4 \mathrm{kcal} / \mathrm{g}=448 \mathrm{kcal}$
Fat 20\% Emulsion: 2,875kcal x $0.3=863.5 \mathrm{kcal}$
$863.5 \mathrm{kcal} \times 1 \mathrm{ml} / 2 \mathrm{kcal}=431.25 \mathrm{ml}$
CHO: $3100 \mathrm{ml}-(1317.6 \mathrm{ml}$ protein +431.25 ml fat $)=1351 \mathrm{ml}$
$2875 \mathrm{kcal}-(448 \mathrm{kcal}$ protein +862.5 kcal fat $)=1564.5 \mathrm{kcal}$
$1564.5 \mathrm{kcal} \mathrm{x} 1 \mathrm{~g} / 3.4 \mathrm{kcal}=460 \mathrm{~g}$
$460 \mathrm{~g} / 1351 \mathrm{ml}=34 \%$
CHO Load: $460000 \mathrm{mg} / 89 \mathrm{~kg} / 1440 \mathrm{~min}=3.59 \mathrm{load}$
Fat Load: $86.25 \mathrm{~g} / 89 \mathrm{~kg}=0.97$
Final Concentrations: Protein $=112 \mathrm{~g} / 3100 \mathrm{ml}$
$\mathrm{CHO}=460 \mathrm{~g} / 3100 \mathrm{ml}$
Fat $=86.25 \mathrm{~g} / 3100 \mathrm{ml}$

	Initial Stock concentration	Total grams	Total volume
Amino acids	8.5%	112 g	1317.6 ml
Dextrose	34%	460 g	1351 ml
Fat	20%	86.25 g	431.25 ml
CHO load		3.6	
Fat load	0.97		
Final AA concentration	3.6%		
Final dextrose concentration	3100 ml		
Total final volume			

